A Hybrid Particle Level Set Method forImproved Interface Capturing
نویسندگان
چکیده
In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are under-resolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume of fluid methods in the conservation of mass and purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions. ∗Research supported in part by an ONR YIP and PECASE award N00014-01-1-0620, and NSF DMS-0106694 †Research supported in part by DOE under the ASCI Academic Strategic Alliances Program (LLNL contract B341491) ‡Scientific Computing Computational Mathematics Program, Stanford University, Stanford, California 94305 §Computer Science Department, Stanford University, Stanford, California 94305 ¶Mechanical Engineering Department, Stanford University, Stanford, California 94305 ‖Research supported in part by DARPA under the Software Enabled Control Program (AFRL contract F33615-99-C-3014)
منابع مشابه
Computational Simulation of Hydrodynamic Convection in Rising Bubble Under Microgravity Condition
In this work, rising of a single bubble in a quiescent liquid under microgravity condition was simulated. The related unsteady incompressible full Navier-Stokes equations were solved using a conventional finite difference method with a structured staggered grid. The interface was tracked explicitly by connected marker points via hybrid front capturing and tracking method. One field approximatio...
متن کاملOn the Role of Particle and Radial Basis Functions in a Finite Element Level Set Method for Bubble Dynamics
The aim of this presentation is to highlight the role that Particle-based simulations and Radial Basis Functions (RBFs) have played in the development of a computationally efficient, level-set, Finite Element method for the simulation of Newtonian and non-Newtonian interface flows [1]. First, we introduce the mathematical formulation and the interface-capturing technique used in the simulation ...
متن کاملDesigning a hybrid quantum controller for strongly eigenstate controllable systems
In this paper, a new quantum hybrid controller for controlling the strongly eigenstate controllable systems, is designed. For this purpose, a Lyapunov control law is implemented when the target state is in reachable set of the initial state. On the other hand, if the target state is not in the reachable set of the given initial state, based on Grover algorithm, a new interface state that the t...
متن کاملOn improving mass conservation of level set by reducing spatial discretization errors
The impact of the Level Set (LS) method on numerical capturing of interfaces (Osher and Fedkiw, 2003; Sethian, 1999) is well known. Widely-reaching applications include fluid mechanics, combustion, computer vision, and material science. As a way of describing immiscible multi-phase flows, the LS was shown to provide a worthy alternative (Sussman et al., 1994) to the already in existence volume-...
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کامل